and K. Mizutani, ibid., 45, 3415 (1972); H. Hosoya, Fibonacci Q., 11, 255 (1973).
(7) R. B. Mallion, A. J. Schwenk, and N. Trinajstić, Croat. Chem. Acta, 46, 171 (1974); R. B. Mallion, N. Trinajstić, and A. J. Schwenk, Z. Naturforsch. A, 29, 1481 (1974).
(8) See, e.g., A. Streitwieser, Jr., 'Molecular Orbital Theory for Organic Chemists'", Wiley, New York, N.Y., 1961, Chapters 4 and 5.
(9) J. Aihara, J. Am. Chem. Soc., 98, 2750 (1976).
(10) This is a symbolic representation for discriminating heteroatoms. It permits one to graphically interpret the secular determinant for the heteroconjugated system.
(11) The term 'Sachs graph' is used here as it was adopted in ref 3, 4, and 7. A different term reflecting priority (see ref 1) might also be assigned to the same concept.
(12) B. A. Hess, Jr., and L. J. Schaad, J. Am. Chem. Soc., 93, 305 (1971).
(13) J. Aihara, Bull. Chem. Soc. Jpn., 48, 517 (1975).
(14) J. Aihara, Bull. Chem. Soc. Jpn., 48, 1501 (1975).
(15) P. Bischof, R. Gleiter, and E. Heilbronner, Helv. Chim. Acta, 53, 1425 (1970).
(16) B. A. Hess, Jr., L. J. Schaad, and C. W. Holyoke, Jr., Tetrahedron, 28, 3657, 5299 (1972); 31, 295 (1975); B. A. Hess, Jr., and L. J. Schaad, J. Am. Chem. Soc., 95, 3907 (1973).
(17) M. J. S. Dewar and G. J. Gleicher, J. Am. Chem. Soc., 87, 685, $692(1965)$; M. J. S. Dewar and C. de Llano, ibid., 91, 789 (1969); M. J. S. Dewar, A. J. Harget, and N. Trinajstić, ibid., 91, 6321 (1969); M. J. S. Dewar and N. Trinajstić, Tetrahedron, 26, 4269 (1970); M. J. S. Dewar, A. J. Harget, N. Trinajstic, and S. D. Worley, ibid., 26, 4505 (1970).
(18) J. Aihara, J. Org. Chem., 41, 2488 (1976).
(19) C. A. Coulson and A. Streltwieser, Jr., 'Dictionary of π-Electron Calculations', Pergamon Press, Oxford, 1965.

Unrestricted Open-Shell Calculations by MiINDO/3. Geometries and Electronic Structure of Radicals

P. Bischof
Contribution from the Institut für Organische Chemie der Technischen Hochschule Darmstadt, D 61 Darmstadt, West Germany. Received December 22, 1975

Abstract

The MINDO $/ 3$ semiempirical SCF-MO method has been expanded to an unrestricted open-shell treatment. The calculated heats of formation of radicals as well as their geometries compare reasonably well with experiment. Calculated spin densities predict the correct proton hyperfine splitting ordering for most EPR spectra.

The geometry and the electronic structure of radicals determining their chemical reactivity and spectroscopic properties is of great importance in many fields of organic chemistry. ${ }^{1}$ Unlike in reactions where only closed-shell reactants are involved, the application of the Woodward-Hoffmann rules ${ }^{2}$ is not clear cut ${ }^{3}$ and calls for more detailed theoretical investigations.

Since at present reliable ab initio calculations cannot yet be carried out on larger systems of chemical interest, the chemist is forced to choose some semiempirical method for his purposes.

MINDO/ 3^{4} has proven ${ }^{5}$ to be the most reliable method of this type, although some shortcomings are well known and have been criticized. ${ }^{5.6}$

Calculated properties like energy, spin distribution, and dipole moment depend strongly upon the geometry of the species in question. This demands total geometry optimization in order to make the results independent of any arbitrary choice of geometrical variables.

To our experience, the original closed-shell program ${ }^{7}$ fails to converge in some cases, probably since the bond order matrix in using the restricted half-electron method ${ }^{8}$ is not invariant to small changes in geometry. Calculations failed to converge mainly for complex systems, where the number of geometrical variables was large.

Following Dewar's suggestion, ${ }^{4}$ the MINDO/ 3 method has been expanded to a nonrestricted open-shell treatment, in which this difficulty has been avoided. Although this purpose was the main "driving force", nonrestricted calculations in addition feature the well-known advantages common to this approach: (a) negative spin densities (which are known to occur ${ }^{9}$) can be computed; (b) Koopmans' theorem ${ }^{10}$ can be used to estimate ionization potentials; and (c) adiabatic ionization potentials of closed-shell systems can be calculated by comparing their energies with the energies of the optimized open-shell cations. Furthermore, calculations of this type might
be regarded as an independent test upon the parameters used in MINDO/3.

Although the power of any semiempirical treatment lies in the computation of large systems, we shall focus mainly on small species in this communication in order to compare with experimental facts that are available.

Procedure

The derivation of the Roothaan equations for open-shell systems ${ }^{11}$ is straightforward and can be found in any textbook. ${ }^{12}$ Within the MINDO/3 framework, the elements of the F matrices take the following form:

$$
\begin{gather*}
F_{i i}^{\alpha}=H_{i i}+p_{i i}^{\beta} g_{i i}+\sum_{k \neq i}^{(m)}\left(p_{k k} g_{i k}-p_{k k}^{\alpha} h_{i k}\right) \\
+\sum_{n \neq m} \gamma_{m n} \sum_{k}^{(n)} p_{k k} \tag{1}\\
F_{i j}^{\alpha}(m, m)=\left(2 p_{i j}-p_{i j}^{\alpha}\right) h_{i j}-p_{i j}^{\alpha} g_{i j} \tag{2}\\
F_{i j}^{\alpha}(m, n)=H_{i j}-p_{i j}^{\alpha} \gamma_{m n} \tag{3}
\end{gather*}
$$

where

$$
\begin{gather*}
p_{i j}=p_{i j}^{\alpha}+p_{i j}^{\beta} \tag{4}\\
g_{i j}=(i i \mid j j) \tag{5}\\
h_{i j}=(i j \mid i j) \tag{6}\\
H_{i i}=U_{i i}-\sum_{n \neq m} C_{n} \gamma_{m n} \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
H_{i j}=\beta_{i j}^{c}=S_{i j}\left(I_{i}+I_{j}\right) B_{m n} \tag{8}
\end{equation*}
$$

The symbols have their conventional meanings. ${ }^{12}$ Analogous expressions hold for $F_{i j}{ }^{\beta}$ of course. Using this notation, the total energy of a molecule is given by

Radical	$\Delta H_{\text {f }}$			$\Delta H_{\text {H }}$			IV		
	Calcd	Obsd ${ }^{\text {a }}$	Error	Calcd ${ }^{\text {b }}$	Obsd ${ }^{6}$	Error	Calcd	Obsd ${ }^{\circ}$	Error
CH	137.9	142.4	-4.5	98.5	100.8	-2.3	9.31	11.13	-1.82
$\mathrm{CH}_{2}{ }^{+}$	314.0	333	-19	105.8	125.1	-19.3	19.77		
CH_{3}	40.9	33.2	7.7	99.3	103.2	-3.9	10.0	9.84	-0.16
$\mathrm{CH}_{4}{ }^{+}$	263.0	274	-11	98.8	104	-5.2	19.33		
$\mathrm{C}_{2} \mathrm{H}$	122.8	112	10.8	117.1	111.8	5.3	10.67	$11.3{ }^{\circ}$	-0.63
$\mathrm{C}_{2} \mathrm{H}_{2}+$	297.2	317	-19.8	95.7	100.1	-4.4	18.51		
$\mathrm{C}_{2} \mathrm{H}_{3}$	62.5	65	-2.5	95.4	104.7	-8.6	9.24	9.45	-0.21
$\mathrm{C}_{2} \mathrm{H}_{5}$	18.4	25	-6.6	90.3	97.3	-7.7	9.07	8.40	0.67
$\mathrm{HC} \equiv=\mathrm{CCH}_{2}$	70.2	75	-4.8	87.3	82.8	4.5	8.57	8.34	0.23
$\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$	36.1	30	6.1	81.7	85	-3.3	8.61	8.15	0.46
$c \cdot \mathrm{C}_{3} \mathrm{H}_{5}$	49.3	68	-18.7	92.7	107.4	-14.7	9.03	8.05	0.98
$\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}$	38.3	58	-19.7	83.9	105.2	-21.3	8.36		
$n-\mathrm{C}_{3} \mathrm{H}_{7}$	11.4	22.1	-10.7	90.0	98	-8.0	9.05	8.10	0.95
$i-\mathrm{C}_{3} \mathrm{H}_{7}$	1.9	16.8	-14.9	80.5	94.5	-14.0	8.66	7.50	1.16
$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CCH}_{3}$	32.4	21	11.4	82	77.4	4.6	8.65	8.03	0.63
c- $\mathrm{C}_{4} \mathrm{H}_{7}$	26.7	$51.1{ }^{\text {c }}$	-24.4	83.9	96.8	-12.9	8.78	7.93	0.85
$n-\mathrm{C}_{4} \mathrm{H}_{9}$	5.1	18.5	-13.4	87.6	98	-10.4	9.05	8.64	0.41
$s-\mathrm{C}_{4} \mathrm{H}_{9}$	-4.6	8.83	-13.43	72.4	94.5	-22.1	8.68	7.93	0.65
$i-\mathrm{C}_{4} \mathrm{H}_{9}$	12.8	12.67	0.13	89.8	98	-8.2	9.0	8.35	0.65
$t-\mathrm{C}_{4} \mathrm{H}_{9}$	-5.4	4.5	-9.9	71.6	91	-19.4	8.49	7.41	1.07
c- $\mathrm{C}_{5} \mathrm{H}_{9}$	2.8	22^{d}	-19.2	82.8	92.5	-9.7	8.77	7.79	0.98
$c \cdot \mathrm{C}_{6} \mathrm{H}_{11}$	-8.9	12^{d}	-20.9	79.8	93.6	-13.8	8.71	7.66	1.05
Phenyl	69.6	72	-2.4	92.9	104	-11.1	8.81	9.20	-0.39
Benzyl	51.6	37.5	14.1	80.2	85	-4.8	8.09	7.76	0.33
Phenoxy	2.2	9	-6.8	82.8	84.1	-1.3	9.08	8.84	0.24
1-Norbornyl	43.3			87.0			8.73		
7-Norbornyl	40.8			84.5			8.73		
OH	16.4	9.31	7.1	122.1	119	3.1	13.0	13.17	-0.17
$\mathrm{H}_{2} \mathrm{O}^{+}$	230.6	233	-2.4	137.5	129.1	8.4	35.3		
$\mathrm{O}_{2} \mathrm{H}$	-3.4	5.0	-8.4	80.3	90	-9.7	10.86	11.53	-0.67
NO	21.1	21.6	-0.5	56.0	49.9	6.1	9.32	9.25	0.07
NO_{2}	-25.3	7.9	-33.2	40.4	78.6	-38.2	9.89	9.80	0.09
NH_{2}	29.1	41	-11.9	90.6	103	-9.4	10.53	11.40	-0.87
CHO	-4.0	-4.12	0.12	73.6	88	-14.4	9.04	9.83	-0.79
$\mathrm{CH}_{3} \mathrm{O}$	4.8	-0.5	5.3	107	102	5	10.81	$9.2{ }^{\text {e }}$	1.61
$\mathrm{CH}_{3} \mathrm{CO}$	-25.1	-4.5	-20.6	70.6	88	-17.4	8.17	8.05	0.12
CF	42.5	68	-25.5	79.4	83.1	-3.7	8.23	13.8	-5.57
$\mathrm{CH}_{2} \mathrm{~F}$	-15.5	-6.6	-10.4	87.8	101	-13.2	9.8	9.4	0.4
CHF_{2}	-91.5	-70.2	-21.3	66.6	101	-34.4	10.11	9.45	0.66
CF_{3}	-168.6	-114	-54.6	49.3	106	-56.7	11.14	10.1	1.04
$\mathrm{C}_{2} \mathrm{~F}$	71.2	66 ± 10^{e}	5.2	107.2	88.7	18.5	10.12		
CN	58.8	100	-41.2	76.5	129	-52.5	10.3	14.5	-4.2
$\mathrm{NH}_{3}{ }^{+}$	203	223	-20	101.2	125.1	-23.9	21.89	23.5	-1.61
CCl	98.8	122	-23.2	83.2	94.1	-10.9	8.58	12.9	-4.32
$\mathrm{CH}_{2} \mathrm{Cl}$	25.7	29	-3.3	93.1	94.4	-1.3	9.55	9.32	0.23
CHCl_{2}	11.3	31	-19.7	85.7	106.1	-20.4	9.50	9.30	0.20
CCl_{3}	-0.8	14	-14.8	77.3	90.7	-13.4	9.56	8.78	0.78

${ }^{a}$ Values, unless otherwise stated, from J. L. Franklin, J. D. Dillard, H. M. Rosenstock, Y. T. Herron, K. Draxl, and F. M. Field, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., No. 26 (1969). ${ }^{b}$ Calculated by thermocycle using either calculated or experimental heats of formation. ${ }^{c}$ D. F. McMillen, D. M. Golden, and S. W. Benson, Int. J. Chem. Kinet., 4, 487 (1972). ${ }^{\text {d J. A. Kerr, Chem. Rev., 66, } 465 \text { (1966). e V. I. }}$ Vedeneyco, L. V. Gurvich, V. N. Kondrat'yev, V. A. Medvedev, and Ye L. Frankevich, "Bond Energies, Ionization Potentials, and Electron Affinities", Edward Arnold, London, 1966.

$$
\begin{equation*}
E(\mathrm{M})=(1 / 2) \sum_{i} \sum_{j}\left(p_{i j}^{\alpha} F_{i j}^{\alpha}+p_{i j}^{\beta} F_{i j}^{\beta}+p_{i j} H_{i j}\right)+E_{\mathrm{c}} \tag{9}
\end{equation*}
$$

where E_{c} represents the core-core repulsion energy term.
In order to minimize this energy with respect to the geometrical variables, the Fletcher-Powell algorithm ${ }^{13}$ was adopted. Since the calculation of gradients and their scalar products used in this method is performed quite differently in our program compared to the original one, ${ }^{7}$ some computational details about this subject shall be given.

If the geometry of a molecule consisting of N nuclei is represented as a $3 N-6$ dimensional vector $|x\rangle$, the energy E and the population matrices P^{α} and P^{β} can be calculated at any
given point $|x\rangle$. Assuming that for small changes in geometry the bond order matrices P^{α} and P^{β} remain constant, the individual gradients can be calculated by finite differences as

$$
\begin{equation*}
\left(\partial E / \partial x_{i}\right)_{x_{k . k \neq 1}} \simeq\left(E_{i}^{+}-E_{i}^{-}\right) / 2 \Delta \tag{10}
\end{equation*}
$$

where E^{+}and E^{-}correspond to the geometries

$$
\begin{equation*}
|x\rangle_{i}^{+}=\left(x_{1}, x_{2}, \ldots, x_{i}+\Delta, x_{i+1} \ldots\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
|x\rangle_{i}^{-}=\left(x_{1}, x_{2}, \ldots, x_{i}-\Delta, x_{i+1} \ldots\right) \tag{12}
\end{equation*}
$$

respectively.
Omitting all terms that cancel in eq 10 , only contributions

Figure 1. Plot of calculated (ΔH_{f} (calcd)) vs. observed heats of formation (ΔH_{f} (obsd)) in $\mathrm{kcal} / \mathrm{mol}$. The line shown is the theoretical line of unit slope.
depending on the overlap $S_{i j}\left(E_{\mathrm{S}}\right)$ and the electronic repulsions $\gamma_{m n}\left(E_{\gamma}\right)$ have to be considered for the electronic energy parts. An appropriate energy partitioning is therefore given by

$$
\begin{equation*}
E^{ \pm}=E_{\mathrm{S}^{ \pm}}+E_{\gamma}{ }^{ \pm}+E_{\mathrm{c}^{ \pm}}+\text {constant } \tag{13}
\end{equation*}
$$

Substituting eq $1-8$ into eq 9 finally yields the following reduced energy terms:

$$
\begin{array}{r}
E_{\mathrm{S}^{ \pm}}=\sum_{i}^{(m)<(n)} \sum_{j}^{(n)} 2 B_{m n}\left(I_{i}+I_{j}\right)\left(p_{i j}^{\alpha}+p_{i j}^{\beta}\right) S_{i j} \pm \\
E_{\gamma} \pm=\sum_{m<n} \sum_{n}\left(Q_{m} Q_{n}-Q_{m} C_{n}-Q_{n} C_{m}-\pi_{m n}\right) \gamma_{m n^{\prime}} \pm \tag{15}
\end{array}
$$

where

$$
\begin{equation*}
Q_{m}=\sum_{i}^{(m)} p_{i i} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{m n}=\sum_{i}^{(m)(n)} \sum_{j}^{\left.\left(p_{i j}^{\alpha} p_{i j}^{\alpha}+p_{i j}^{\beta} p_{i j}^{\beta}\right), ~\right)} \tag{17}
\end{equation*}
$$

While the gain in computer time by using these reduced formulas was negligible, the numerical stability of the gradients has improved a lot. A further refinement has been achieved by recognizing that eq 10 can be applied to any desired search vector $|s\rangle$ directly. This way, excessive gradient calculations were avoided, since the individual components of the gradient $|g\rangle$ need not be known for its scalar product $\langle g \mid s\rangle$. This is especially important if the gradients need to be calculated by full SCF calculations, which seems to be necessary if configuration interaction has to be taken into account.

Results

Energies. Table I summarizes the calculated heats of formation (ΔH_{f}), the calculated hydrogen atom affinities $\left(\Delta H_{\mathrm{H}}\right)$, and ionization potentials (I_{V}) of various radicals.

The calculated heats of formation are correlated with experimental values in Figure 1. All results correspond to the predicted equilibrium structure of the radicals, which was obtained in the usual manner by total geometry optimization as outlined above. The ionization potentials are estimated using

Figure 2. Predicted equilibrium structures of the 1-norbornyl (a) and the 7 -norbornyl radical (b). The numbers in parentheses are the predicted deviations of the corresponding values as compared to parent norbornane. Φ denotes the dihedral angles between the planes $\mathrm{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \mathrm{C}^{4}$ and $\mathrm{C}^{1} \mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}^{6}$. The predicted planes of symmetry (σ) are shown for both radicals.

Koopmans' theorem. ${ }^{10}$ The choice of examples was taken quite randomly, although emphasis has been put on pure hydrocarbons.

Table I reveals that, with very few exceptions, all radicals are predicted too stable by an average of $10 \mathrm{kcal} / \mathrm{mol}$ as compared with experiment. This had to be expected, since the parameters adjusted for closed-shell systems already account for correlation energy, part of which is taken twice over if α and β electrons are allowed to occupy different spatial orbitals. This has been discussed in detail by Dewar et al. ${ }^{8}$

Recognizing this tendency, the calculated heats of formation compare reasonably well with experiment. The defects parallel those for closed-shell systems in as far as strongly hydrogencrowded radicals are consistently too high in energy as compared to others. Note that most isomers are calculated in correct energy ordering among each other. This is especially promising in view of a possible application of MINDO/ 3 to intramolecular rearrangement reactions of radicals, for which experimental evidence is mostly speculative.

The mechanism of a fragmentation reaction is mainly controlled by the relative bond strengths within a molecule. The observed correct ordering of the corresponding fragments, therefore, is encouraging for this type of reaction as well.

Geometries. The strong interplay between geometry and electronic structure of molecules demands that a reliable semiempirical method not only yields quite good energies but reasonable geometries as well. The optimized structural parameters are given in Table II and compared to experiment where such data were available. As in closed shell systems, the predicted geometries compare usually quite well with experiment.

The methyl radical was calculated to be slightly pyramidal, while the isoelectronic $\mathrm{NH}_{3}{ }^{+}$cation was found to be planar. This parallels ab initio calculations by Pople et al. ${ }^{14}$ using the STO-3G basis set, while their calculations on the 4-31G level

Table II ${ }^{h}$

\begin{tabular}{|c|c|c|c|}
\hline Radical \& Point group \& Calcd (obsd) geometrical variables ${ }^{i}$ \& Ref

\hline CH \& $C_{\infty}{ }_{\infty}$ \& CH, 1.119 (1.120) \& a

\hline $\mathrm{CH}_{2}{ }^{+}$ \& $C_{2 c}$ \& CH, 1.093; HCH, 137.6 \&

\hline CH_{3} \& C_{30} \& CH, 1.091 (1.079); HCH, 117.0 (120) \& b

\hline $\mathrm{CH}_{4}{ }^{+}$ \& $\mathrm{C}_{2 r}$ \& $\mathrm{CH}^{1}, 1.192 ; \mathrm{CH}^{2}, 1.095 ; \mathrm{H}^{1} \mathrm{CH}^{1}, 49.5 ; \mathrm{H}^{2} \mathrm{CH}^{2}, 123.9$ \&

\hline $\mathrm{C}_{2} \mathrm{H}$ \& C_{s} \& CC, 1.201; CH, 1.080; HCC, 152.81 \&

\hline $\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}$ \& $D_{\infty} h$ \& CC, 1.258; $\mathrm{CH}, 1.082$ \&

\hline $\mathrm{C}_{2} \mathrm{H}_{3}$ \& C_{s} \& $$
\begin{aligned}
& \mathrm{C}^{1} \mathrm{C}^{2}, 1.291 ; \mathrm{H}^{1} \mathrm{C}^{1}, 1.106 ; \mathrm{H}^{2} \mathrm{C}^{1}, 1.098 ; \mathrm{H}^{3} \mathrm{C}^{2}, 1.083 ; \mathrm{H}^{1} \mathrm{C}^{1} \mathrm{C}^{2}, 125.3 ; \\
& \mathrm{H}^{2} \mathrm{C}^{1} \mathrm{C}^{2}, 123.9 ; \mathrm{H}^{3} \mathrm{C}^{2} \mathrm{C}^{1}, 146.0
\end{aligned}
$$ \&

\hline $\mathrm{CH}_{2} \mathrm{CH}_{3}$ \& C_{s} \& $$
\begin{gathered}
\mathrm{C}^{1} \mathrm{C}^{2}, 1.44 ; \mathrm{C}^{1} \mathrm{H}^{1}, 1.097 ; \mathrm{C}^{2} \mathrm{H}^{3}, 1.116 ; \mathrm{C}^{2} \mathrm{H}^{4}, 1.111 ; \mathrm{H}^{1} \mathrm{C}^{1} \mathrm{C}^{2}, 122.8 ; \\
\mathrm{H}^{1} \mathrm{C}^{1} \mathrm{H}^{2}, 112.7 ; \mathrm{C}^{1} \mathrm{C}^{2} \mathrm{H}^{3}, 112.4 ; \mathrm{C}^{1} \mathrm{C}^{2} \mathrm{H}^{4}, 113.5 ; \mathrm{H}^{4} \mathrm{C}^{2} \mathrm{H}^{5}, 106.3
\end{gathered}
$$ \&

\hline CHCCH_{2} \& $C_{2 c}$ \& $\mathrm{C}^{1} \mathrm{C}^{2}, 1.38 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.22 ; \mathrm{H}^{1} \mathrm{C}^{1}, 1.095 ; \mathrm{H}^{3} \mathrm{C}^{3}, 1.071 ; \mathrm{H}^{1} \mathrm{C}^{1} \mathrm{H}^{2}, 113.7$ \&

\hline $\mathrm{CH}_{2} \mathrm{CHCH}_{2}$ \& $C_{2 c}$ \& CC, 1.379; $\mathrm{C}^{1} \mathrm{H}, 1.098 ; \mathrm{C}^{2} \mathrm{H}, 1.112 ; \mathrm{HC}^{1} \mathrm{H}, 111.7 ; \mathrm{C}^{1} \mathrm{C}^{2} \mathrm{H}, 114.6 ; \mathrm{CCC}, 130.8$ \&

\hline $c^{-} \mathrm{C}_{3} \mathrm{H}_{5}$ \& C_{s} \& $\mathrm{C}^{1} \mathrm{C}^{2}, 1.462 ; \mathrm{C}^{2} \mathrm{C}^{2}, 1.507 ; \mathrm{C}^{1} \mathrm{H}, 1.09 ; \mathrm{C}^{2} \mathrm{H}, 1.107 ; \mathrm{HC}^{2} \mathrm{H}, 108.5 ; \mathrm{C}^{2} \mathrm{C}^{1} \mathrm{C}^{2}, 62.1$ \&

\hline $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}$ \& C_{s} \& $\mathrm{C}^{1} \mathrm{C}^{2}, 1.425 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.296 ; \mathrm{C}^{1} \mathrm{H}, 1.11 ; \mathrm{C}^{3} \mathrm{H}, 1.10 ; \mathrm{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3}, 166 ; \mathrm{HC}^{1} \mathrm{H}, 106 ;$ $\mathrm{HC}^{3} \mathrm{H}, 110.5$ \&

\hline $n-\mathrm{C}_{3} \mathrm{H}_{7}$ \& C_{s} \& $$
\begin{aligned}
& \mathrm{C}^{1} \mathrm{C}^{2}, 1.494 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.454 ; \mathrm{C}^{1} \mathrm{H}, 1.11 ; \mathrm{C}^{2} \mathrm{H}, 1.124 ; \mathrm{C}^{3} \mathrm{H}, 1.096 ; \mathrm{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3}, 121.3 ; \\
& \mathrm{HC}^{1} \mathrm{H}, 105.5 ; \mathrm{HC}^{2} \mathrm{H}, 101.4 ; \mathrm{HC}^{3} \mathrm{H}, 112.8
\end{aligned}
$$ \&

\hline $i-\mathrm{C}_{3} \mathrm{H}_{7}$ \& $C_{2 c}$ \& $\mathrm{C}^{1} \mathrm{C}^{2}, 1.456 ; \mathrm{C}^{1} \mathrm{H}, 1.113 ; \mathrm{C}^{2} \mathrm{H}, 1.108 ; \mathrm{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3}, 131.1 ; \mathrm{HC}^{1} \mathrm{H}, 105.5$ \&

\hline $c \cdot \mathrm{C}_{4} \mathrm{H}_{7}$ \& $C_{2 t}$ \& $$
\begin{aligned}
& \mathrm{C}^{1} \mathrm{C}^{2}, 1.487 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.532 ; \mathrm{C}^{2} \mathrm{C}^{1} \mathrm{C}^{2}, 94.3 ; \mathrm{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3}, 87.5 ; \mathrm{C}^{2} \mathrm{C}^{3} \mathrm{C}^{2}, 90.7 ; \\
& \mathrm{HC}^{2} \mathrm{H}, 99.2 ; \mathrm{HC}^{3} \mathrm{H}, 117.9
\end{aligned}
$$ \&

\hline $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CCH}_{3}$ \& C_{s} \& $\mathrm{C}^{1} \mathrm{C}^{2}, 1.496 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.398 ; \mathrm{C}^{1} \mathrm{H}, 1.11 ; \mathrm{C}^{2} \mathrm{H}, 1.098 ; \mathrm{C}^{3} \mathrm{C}^{2} \mathrm{C}^{3}, 119.7 ; \mathrm{HC}^{1} \mathrm{H}, 105.2$; $\mathrm{HC}^{3} \mathrm{H}, 111.0$ \&

\hline $n-\mathrm{C}_{4} \mathrm{H}_{9}$ \& C_{1} \& $\mathrm{C}^{1} \mathrm{C}^{2}, 1.455 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.513 ; \mathrm{C}^{3} \mathrm{C}^{4}, 1.495 ; \mathrm{C}^{1} \mathrm{H}, 1.096 ; \mathrm{C}^{2} \mathrm{H}, 1.124 ; \mathrm{C}^{3} \mathrm{H}, 1.121$; $\mathrm{C}^{4} \mathrm{H}, 1.11 ; \mathrm{HC}^{1} \mathrm{H}, 112.7 ; \mathrm{HC}^{2} \mathrm{H}, 101.4 ; \mathrm{HC}^{3} \mathrm{H}, 102.2 ; \mathrm{HC}^{4} \mathrm{H}, 105.4$ \&

\hline i - $\mathrm{C}_{4} \mathrm{H}_{9}$ \& C_{1} \& $$
\begin{aligned}
& \mathrm{C}^{1} \mathrm{C}^{2}, 1.474 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.515 ; \mathrm{C}^{1} \mathrm{H}, 1.096 ; \mathrm{C}^{2} \mathrm{H}, 1.135 ; \mathrm{C}^{3} \mathrm{H}, 1.111 ; \mathrm{HC}^{1} \mathrm{H}, 112.75 ; \\
& \mathrm{C}^{1} \mathrm{C}^{2} \mathrm{H}, 103.45, \mathrm{HC}^{3} \mathrm{H}, 105.0
\end{aligned}
$$ \&

\hline $s-\mathrm{C}_{4} \mathrm{H}_{9}$ \& C_{1} \& $\mathrm{C}^{1} \mathrm{C}^{\mathrm{en}}$ (methylene), 1.474; $\mathrm{C}^{\mathrm{l}} \mathrm{C}^{\mathrm{m}}$ (methyl), 1.457; $\mathrm{C}^{\mathrm{en}} \mathrm{C}^{\mathrm{e}}($ ethyl $), 1.495 ; \mathrm{C}^{1} \mathrm{H}, 1.107$; $\mathrm{C}^{\mathrm{en}} \mathrm{H}, 1.12 ; \mathrm{C}^{\mathrm{m}} \mathrm{H}, 1.111 ; \mathrm{C}^{3} \mathrm{H}, 1.111 ; \mathrm{C}^{\mathrm{m}} \mathrm{C}^{1} \mathrm{C}^{2}, 129.6 ; \mathrm{C}^{e} \mathrm{C}^{2} \mathrm{C}^{1}, 120.6 ; \mathrm{HC}^{\mathrm{m}} \mathrm{H}$, 105.7; $\mathrm{HC}^{\text {en }} \mathrm{H}, 101.9 ; \mathrm{HC}^{\mathrm{e}} \mathrm{H}, 105.6$ \&

\hline $t-\mathrm{C}_{4} \mathrm{H}_{9}$ \& C_{3} \& CC, 1.479; CH, 1.112; CCC, 120; $\mathrm{HCH}, 105.2$ \&

\hline c- $\mathrm{C}_{5} \mathrm{H}_{9}$ \& $C_{2 t}$ \& $\mathrm{C}^{1} \mathrm{C}^{2}, 1.483 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.525 ; \mathrm{C}^{3} \mathrm{C}^{3}, 1.530 ; \mathrm{C}^{1} \mathrm{H}, 1.10 ; \mathrm{C}^{2} \mathrm{H}, 1.118 ; \mathrm{C}^{3} \mathrm{H}, 1.118$; $\mathrm{C}^{2} \mathrm{C}^{1} \mathrm{C}^{2}, 112.3 ; \mathrm{C}^{3} \mathrm{C}^{2} \mathrm{C}^{1}, 106.0 ; \mathrm{C}^{3} \mathrm{C}^{3} \mathrm{C}^{2}, 107.8 ; \mathrm{HC}^{2} \mathrm{H}, 102.4 ; \mathrm{HC}^{3} \mathrm{H}, 102.9$ \&

\hline $c-\mathrm{C}_{6} \mathrm{H}_{11}$ \& C_{s} \& $$
\begin{aligned}
& \mathrm{C}^{1} \mathrm{C}^{2}, 1.478 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.520 ; \mathrm{C}^{3} \mathrm{C}^{4}, 1.520 ; \mathrm{C}^{1} \mathrm{H}, 1.10 ; \mathrm{C}^{2} \mathrm{H}, 1.12 ; \mathrm{C}^{3} \mathrm{H}, 1.12 ; \\
& \mathrm{C}^{4} \mathrm{H}, 1.12 ; \mathrm{HC}^{2} \mathrm{H}, 101.65 ; \mathrm{HC}^{3} \mathrm{H}, 102.0 ; \mathrm{HC}^{4} \mathrm{H}, 102.0
\end{aligned}
$$ \&

\hline Phenyl \& C_{20} \& $\mathrm{C}^{1} \mathrm{C}^{2}, 1.386 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.411 ; \mathrm{C}^{2} \mathrm{H}, 1.102 ; \mathrm{C}^{3} \mathrm{H}, 1.105 ; \mathrm{C}^{4} \mathrm{H}, 1.105 ; \mathrm{C}^{2} \mathrm{C}^{1} \mathrm{C}^{2}, 127.5$; $\mathrm{C}^{3} \mathrm{C}^{2} \mathrm{C}^{1}, 115.6 ; \mathrm{C}^{3} \mathrm{C}^{4} \mathrm{C}^{3}, 120.7$ \&

\hline Benzyl \& $\mathrm{C}_{2 \mathrm{c}}$ \& $\mathrm{C}^{1} \mathrm{C}^{2}, 1.455 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.401 ; \mathrm{C}^{3} \mathrm{C}^{4}, 1.415 ; \mathrm{C}^{1} \mathrm{C}^{7}, 1.401 ; \mathrm{C}^{2} \mathrm{H}, 1.106 ; \mathrm{C}^{3} \mathrm{H}, 1.105 ; \mathrm{C}^{4} \mathrm{H}$, 1.104; $\mathrm{C}^{7} \mathrm{H}, 1.098 ; \mathrm{C}^{2} \mathrm{C}^{1} \mathrm{C}^{2}, 114.4 ; \mathrm{C}^{3} \mathrm{C}^{2} \mathrm{C}^{1}, 122.7 ; \mathrm{C}^{3} \mathrm{C}^{4} \mathrm{C}^{3}, 119.4 ; \mathrm{HC}^{7} \mathrm{H}, 111.4$ \&

\hline Phenoxy \& C_{26} \& $\mathrm{C}^{1} \mathrm{O}, 1.216 ; \mathrm{C}^{1} \mathrm{C}^{2}, 1.489 ; \mathrm{C}^{2} \mathrm{C}^{3}, 1.388 ; \mathrm{C}^{3} \mathrm{C}^{4}, 1.425 ; \mathrm{C}^{2} \mathrm{H}, 1.105 ; \mathrm{C}^{3} \mathrm{H}, 1.106 ;$ $\mathrm{C}^{4} \mathrm{H}, 1.104 ; \mathrm{C}^{2} \mathrm{C}^{1} \mathrm{C}^{2}, 115.2 ; \mathrm{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3}, 121.5 ; \mathrm{C}^{2} \mathrm{C}^{3} \mathrm{C}^{4}, 120.8 ; \mathrm{C}^{3} \mathrm{C}^{4} \mathrm{C}^{3}, 120.2$ \&

\hline 1-Norbornyl \& C_{s} \& See Figure 2 \&

\hline 7-Norbornyl. \& C_{s} \& See Figure 2 \&

\hline OH \& $C_{\infty}{ }_{\text {c }}$ \& $\mathrm{OH}, 0.947$ (0.971) \& a

\hline $\mathrm{H}_{2} \mathrm{O}^{+}$ \& C_{20} \& OH, 0.974; HOH, 108.7 \&

\hline HO_{2} \& C_{5} \& OH, 0.976 (0.958); OO, 1.278 (1.30); HOO, 111.4 (105) \& ${ }^{\text {c }}$

\hline NO \& $C_{\infty}{ }_{\text {c }}$ \& NO, 1.164 (1.151) \& a

\hline NO_{2} \& C_{20} \& NO, 1.185 (1.197); ONO, 153.73 (134.25) \& d

\hline NH_{2} \& C_{20} \& NH, 1.035 (1.024); HNH, 102.5 (103) \& d

\hline CHO \& C_{s} \& CH, 1.136 (1.110); CO, 1.154 (1.171); $\mathrm{HCO}, 136.6$ (127.4) \& e

\hline $\mathrm{CH}_{3} \mathrm{O}$ \& C_{30} \& CO, 1.291; CH, 1.125; HCH, 105.5 \&

\hline $\mathrm{CH}_{3} \mathrm{CO}$ \& C_{s} \& CC, 1.458; $\mathrm{CO}, 1.169$; CH, 1.111; OCC, 141.1; HCH, 106 \&

\hline CF \& C_{∞} \& CF, 1.256 (1.267) \& d

\hline $\mathrm{CH}_{2} \mathrm{~F}$ \& C_{5} \& CH, 1.102; CF, 1.318; HCH, 113.1; HCF, 115.4 \&

\hline CHF_{2} \& $C_{2 i}$ \& CH, 1.114; CF, 1.284; FCF, 138.7 \&

\hline CF_{3} \& D_{3} \& CF, 1.288 (1.33); FCF, 120 (112) \& d

\hline $\mathrm{C}_{2} \mathrm{~F}$ \& ${ }_{\text {c }}$ \& CC, 1.229; CF, 1.316; CCF, 149.8 \&

\hline CN \& $C_{\text {co }}$, \& CN, 1.132 (1.172) \& a

\hline $\mathrm{NH}_{3}{ }^{+}$ \& $D_{3 h}$ \& NH, 1.013 (1.07); HNH, 120 (120) \& g

\hline CCl
$\mathrm{CH}_{2} \mathrm{Cl}$ \& $C_{\text {col }}$ \& $\mathrm{CCl}, 1.641$ (1.642) \& d

\hline $\stackrel{\mathrm{CH}_{2} \mathrm{Cl}}{\mathrm{CHCl}}$ \& Css
C_{s}

c \& $\mathrm{CH}, 1.095 ; \mathrm{CCl}, 1.698 ; \mathrm{HCH}, 115.0 ; \mathrm{HCCl}, 115.3$
$\mathrm{CH}, 1.101 ; \mathrm{CCl}, 1.704 ; \mathrm{HCCl}, 111.4 ; \mathrm{ClCCl}, 123.3$ \&

\hline CCl_{3} \& $C_{3 c}$ \& $\mathrm{CCl}, 1.716$ (1.74); C1CC1, 117.3 (120) \& d

\hline
\end{tabular}

[^0]Table III

Radical	$\left\langle S^{2}\right\rangle_{\text {SD }}$	$\left\langle S^{2}\right\rangle_{\text {AA }}$	Proton	$a_{\text {SD }}{ }^{\text {a }}$	$a_{\text {AA }}{ }^{\text {b }}$	$a_{\text {expt }}{ }^{c}$
CH_{3}	0.760	0.750		-16.73	-2.38	-23.04
$\mathrm{C}_{2} \mathrm{H}$	0.809	0.752		50.33	52.16	16.16
$\mathrm{C}_{2} \mathrm{H}_{3}$	0.820	0.752	α	-1.23	14.54	16.0
			β trans	19.92	16.42	34.0
			β cis	67.76	63.83	68.0
$\mathrm{C}_{2} \mathrm{H}_{5}$	0.767	0.750	α	-24.08	-9.97	(-)22.38
			β	20.37	18.31	(-)26.87
CHCCH_{2}	0.852	0.756	$-\mathrm{CH}$	-17.34	-7.4	$(-) 12.80^{d}$
			$-\mathrm{CH}_{2}$	-27.22	-11.75	(-)18.90 ${ }^{\text {d }}$
Allyl	0.904	0.756	α	-19.40	-7.95	(-)13.93e
			α^{\prime}	-20.97	-8.61	(-)14.83e
			β	11.51	4.71	$4.06{ }^{\text {e }}$
$c-\mathrm{C}_{3} \mathrm{H}_{5}$	0.764	0.750	α	-7.11	5.28	$6.51{ }^{f}$
			β	14.90	14.11	$23.42{ }^{f}$
$n-\mathrm{C}_{3} \mathrm{H}_{7}$	0.768	0.750	α	-25.46	-10.96	(-)22.08
			β	29.76	26.58	33.2
			γ	-1.47	-0.66	(-)0.38
$i-\mathrm{C}_{3} \mathrm{H}_{7}$	0.768	0.750	α	-25.54	-11.63	(-)22.11
			β	17.99	15.98	24.68
c- $\mathrm{C}_{4} \mathrm{H}_{7}$	0.771	0.750	α	-21.96	-9.95	(-)21.20
			β	23.92	21.15	36.66
			γ	-2.01	-0.80	(-)1.12
$i-\mathrm{C}_{4} \mathrm{H}_{9}$	0.769	0.750	${ }^{\alpha}$	-26.14	-11.87	(-)21.8
			$\beta\left(\mathrm{CH}_{3}\right)$	18.0	16.0	24.5
			$\beta\left(\mathrm{CH}_{2}\right)$	21.96	19.55	27.9
			$\gamma\left(\mathrm{CH}_{3}\right)$	-1.27	-0.49	
$s-\mathrm{C}_{4} \mathrm{H}_{9}$	0.769	0.750	α	-26.6	-12.1	(-)22.0
			β	33.9	30.0	35.1
			γ	-1.16	-0.37	
$t-\mathrm{C}_{4} \mathrm{H}_{9}$	0.768	0.750		15.29	13.58	22.72
${ }_{c}-\mathrm{C}_{5} \mathrm{H}_{9}$	0.769	0.750	α	-23.51	-9.93	(-)21.48
			β	23.72	21.12	35.16
			γ	-1.23	-0.53	(-)0.53
$c-\mathrm{C}_{6} \mathrm{H}_{11}$	0.770	0.750	α	-25.27	-11.4	$(-) 21.15$
			β	24.78	22.08	45.96
			γ	-1.58	-0.69	(-)0.71
			δ	0.36	0.19	
Phenyl	1.021	0.809	o	10.84	6.48	18.10%
			m	0.64	4.43	$6.40{ }^{\prime}$
			p	12.05	5.54	3.07
Benzyl	1.172	0.909	$-\mathrm{CH}_{2}$	-21.75	-6.76	(-) $16.35{ }^{\circ}$
			o	-14.0	-4.32	(-) $5.14{ }^{\circ}$
			m	11.0	3.39	$1.75{ }^{\circ}$
				-13.72	-4.24	(-)6.14e
Phenoxy	1.066	0.825	o	-16.0	-5.62	(-)6.60
			m	10.91	3.83	$1.96{ }^{\text {e }}$
			p	-17.30	-6.08	(-)10.4 ${ }^{e}$
HCO	0.758	0.750		119.8	145.1	137.0
$\mathrm{CH}_{3} \mathrm{CO}$	0.755	0.750		8.72	9.5	5.1

${ }^{a}$ Calculated as $a_{\mathrm{SD}}=394 \zeta_{\mathrm{SD}}$, where ζ_{SD} is the single determinant spin density. ${ }^{b}$ Calculated as $a_{\mathrm{AA}}=540 \zeta_{\mathrm{AA}}$, where ζ_{AA} is the annihilated atomic spin density. ${ }^{c}$ M. Bersohn and J. C. Baird, "An Introduction to Electron Paramagnetic Resonance", W. A. Benjamin, New York, N.Y., 1966, and references cited therein. ${ }^{d}$ See ref $20 .{ }^{e}$ Reference $12 \mathrm{c} .{ }^{f}$ Reference 1.
predicts both radicals to be planar. Experimental evidence ${ }^{15}$ favors a planar structure of CH_{3}. Although MINDO/3 is by far superior to the mentioned $a b$ initio method in predicting inversion barriers of AH_{3} systems, ${ }^{16}$ our result is definitely not conclusive: it is on line with the general trend of MINDO/3 to underestimate HCH bond angles in methyl groups. ${ }^{5}$ In addition, the calculated inversion barrier of CH_{3} is only 0.7 $\mathrm{kcal} / \mathrm{mol}$.

While the formyl, ${ }^{19}$ vinyl, ${ }^{20}$ and acetyl ${ }^{21}$ radicals are known to be bent and are correctly predicted so, the ethynyl radical is linear ${ }^{22}$ or nearly so. ${ }^{23}$ MINDO/ 3 yields a slightly bent radical, although the inversion barrier again is less than 1 $\mathrm{kcal} / \mathrm{mol}$. This is a surprising result considering the fact that the isoelectronic cations HCN^{+}and $\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}$are calculated to be linear. Note that the predicted $\mathrm{C}-\mathrm{C}$ bond length in $\mathrm{C}_{2} \mathrm{H}$ is
only $0.01 \AA$ longer than the one calculated for acetylene, indicating a real triple $\mathrm{C}-\mathrm{C}$ bond in spite of the nonlinearity of the radical.

Spin Densities. To conclude the brief discussion of obtained results, the calculated hydrogen spin densities shall be compared with EPR coupling constants. This comparison was made using the same method as described by Pople et al. ${ }^{24}$ Two independent least-squares analyses were made for the spin densities before ($\zeta_{\text {SD }}$) and after (ζ_{AA}) annihilation of higher spin components. The spin projection was performed using the approximate technique described by Amos and Snyder. ${ }^{25}$ Table III shows the final results for a number of radicals, together with the expectation values of the S^{2} operator before ($\left\langle S^{2}\right\rangle_{\mathrm{SD}}$) and after ($\left\langle S^{2}\right\rangle_{\mathrm{AA}}$) annihilation. It turned out that spin projection did not improve the resulting correlation
coefficient, which for both sets of data was 0.95 . However, the theoretical slope of $K=506 \mathrm{G}$ was much closer approached by the annihilated spin densities. ${ }^{26}$ Furthermore, the relative coupling constants for the various hydrogen atoms within any specific radical (e.g., the assignments of the EPR spectra) are much better reproduced by the annihilated correlation.

The drastic changes of spin densities with geometry is very nicely demonstrated by the phenoxy radical, where the "assumed" geometry yields the wrong ordering, while the optimized structure correctly predicts a_{H} (ortho) $<a_{\mathrm{H}}$ (para).

The strong influence of solvent upon hyperfine interaction is well known and has been tackled by various theoretical models. ${ }^{27}$ For uncharged, unpolar species as those given in Table III this effect can safely be considered to be negligible.

Conclusions

The reasonable accuracy with which energies, geometries, and spin distributions of radicals are calculated by the unrestricted MINDO/ 3 open-shell method shows that this treatment is suitable as a predictive tool in radical chemistry. Although for the reason outlined above the radicals are consistently predicted too stable, this method is superior to the half-electron method mainly because of geometry optimization reasons.

Computer Programs. A deck of the MINDO/3-UHF (Unrestricted Hartree Fock) program, including geometry optimization and spin projection, will be deposited with the Quantum Chemistry Program Exchange.

References and Notes

(1) For a recent review see J. M. Hay, 'Reactive Free Radicals'", Academic Press, London, 1974.
(2) R. B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry", Verlag Chemie, Weinheim, 1970.
(3) H. C. Longuet-Higgins and E. W. Abrahamson, J. Am. Chem. Soc., 87, 2045
(1965).
(4) R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1285 (1975).
(5) R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1294, 1302, 1307 (1975); M. J. S. Dewar, D. H. Lo, and C. A. Ramsden, ibid., 97, 1311 (1975), and references cited therein.
(6) J. A. Pople, J. Am. Chem. Soc., 97, 5306 (1975); W. J. Hehre, ibid., 97. 5308 (1975).
(7) M. J. S. Dewar, H. W. Kollmar, D. H. Lo, H. Metiu, P. J. Student, and P. K. Weiner, private communication.
(8) M. J. S.Dewar, J. A. Hashmall, and C. G. Venier, J. Am. Chem. Soc., 90, 1953 (1968).
(9) For a discussion of experimental determinations, see R. Biehl, M. Plato, and K. Möbius, J. Chem. Phys., 63, 3515 (1975).
(10) T. Koopmans, Physica, 1, 134 (1934).
(11) J. C. Slater, Phys. Rev.., 35, 210 (1930); J. A. Pople and R. K. Nesbet, J. Chem. Phys., 22, 571 (1954),
(12) See, for example, (a) M. J. S. Dewar, "The Molecular Orbital Theory of Organic Chemistry", McGraw-Hill, New York, N.Y., 1969; (b) J. N. Murrell and A. J. Harget, "Semiempirical Self-Consistent Field Molecular Orbital Theory of Molecules", Wiley Interscience, London, 1972; (c) J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theory", McGraw-Hill, New York, N.Y., 1970.
(13) R. Fletcher and M. J. D. Powell, Comput. J., 6, 163 (1963).
(14) W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, J. Am. Chem. Soc., 93, 6377 (1971).
(15) G. Herzberg, "Electronic Spectra of Polyatomic Molecules", Van Nostrand, Princeton, N.J., 1967.
(16) The experimental barrier of inversion of ammonia is $5.8 \mathrm{kcal} / \mathrm{mol} .{ }^{17} \mathrm{While}$ STO-3G yields $11 \mathrm{kcal} / \mathrm{mol}$ and $4-32 \mathrm{G}$ only $0.4 \mathrm{kcal} / \mathrm{mol},{ }^{14}$ the calculated value by MINDO/3 is $6 \mathrm{kcal} / \mathrm{mol}$.
(17) J. D. Swalen and J. A. Ibers, J. Chem. Phys., 36, 1914 (1962).
(18) R. Botter and H. M. Rosenstock, Adv. Mass Spectrom., 4, 579 (1968).
(19) J. A. Austin, D. H. Levy, C. A. Gottlieb, and H. E. Radford, J. Chem. Phys., 60, 207 (1974).
(20) P. H. Kasai, J. Am. Chem. Soc., 94, 5950 (1972).
(21) R. K. Solly and S. W. Benson, J. Am. Chem. Soc. 93, 1592 (1971).
(22) W. R. M. Graham, K. I. Dismuke, and W. Weitner, Jr., J. Chem. Phys., 60, 3817 (1974).
(23) W. Weltner, Jr., private communication.
(24) J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Am. Chem. Soc., 90, 4201 (1968).
(25) T. Amos and L. C. Snyder, J. Chem. Phys., 41, 1773 (1964).
(26) As the "theoretical slope" one can consider the coupling constant of the free hydrogen atom, since the spin densities $\zeta_{\text {SD }}$ as well as $\zeta_{\text {AA }}$ must necessarily be one for this one-electron system.
(27) See, for example, J. Spanget-Larsen and J. A. Pedersen, J. Magn. Reson. 18, 383 (1975); Chem. Phys. Lett., 35, 41 (1975), and references cited therein.

Extent of Localization of Orbitals in Loges and the Electron Pair Concept

Mel Levy
Contribution from the Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514. Received February 2, 1976

Abstract

The extent of pair localization in a molecule is discussed in terms of orbitals. It is argued that orbitals may be localized in loges to a degree which is more compatible with the electron pair concept than is suggested by the values of $\mid F(\Omega, \Omega) /$ $\bar{N}(\Omega) \mid$, where $|F(\Omega, \Omega) / \bar{N}(\Omega)|$ is the fractional localization of electrons in loge $\Omega, \bar{N}(\Omega)$ is the average number of electrons in Ω, and $F(\Omega, \Omega)$ is equal to the fluctuation in the population of Ω minus $\bar{N}(\Omega)$. Consider an N-electron closed shell system described by a Hartree-Fock wave function consisting of $N / 2$ space orbitals. Let μ_{1} be that orbital in the Hartree-Fock space which has the largest fraction of its charge density within the loge Ω. This fraction is equal to $\left\langle\mu_{1} \mid \mu_{1}\right\rangle_{\Omega}$, where $\left\langle\mu_{1} / \mu_{1}\right\rangle_{\Omega}$ is the overlap of μ_{1} with itself over the region Ω. In addition, if $\bar{N}(\Omega)=2$, then $\left\langle\mu_{1} \mid \mu_{1}\right\rangle_{\Omega}$ also turns out to be the fractional contribution of μ_{1} to the average number of electrons in Ω. Thus $\left\langle\mu_{1} \mid \mu_{1}\right\rangle_{\Omega}$ should serve as a reasonable assessment of the extent of localization of μ_{1} within Ω. The value of $\left\langle\mu_{1} \mid \mu_{1}\right\rangle_{\Omega}$ may be significantly larger than the value of $|F(\Omega, \Omega) / \bar{N}(\Omega)|$. For example, in the CH bond loge of $\mathrm{CH}_{4},\left\langle\mu_{1} \mid \mu_{1}\right\rangle_{\Omega}=0.82$ while $|F(\Omega, \Omega) / \bar{N}(\Omega)|=0.69$. Furthermore, it is shown that $\left\langle\mu_{1} \mid \mu_{1}\right\rangle_{\Omega}$ is often approximately equal to $|F(\Omega, \Omega) / \hat{N}(\Omega)|^{1 / 2}$.

Introduction

The electron pair concept has been a central feature of chemistry. It is therefore pertinent that the recent important work of Bader and Stephens ${ }^{1 a}$ implies that the model of spatially localized pairs is not quite suitable for many molecules.

For instance, the model was argued to be of only borderline applicability in CH_{4}. With this in mind, it is the purpose of this article to discuss the question of pair localization in terms of the maximum extent that an orbital may be localized within a loge. ${ }^{2}$

[^0]: ${ }^{a}$ G. Herzberg, "Spectra of Diatomic Molecules", Van Nostrand, Princeton, N.J., 1950. ${ }^{b}$ G. Herzberg, "Electronic Spectra of Polyatomic Molecules", Van Nostrand, Princeton, N.J., 1967. ' M. E. Jacox and D. E. Milligan, J. Mol. Spectrosc. 42, 495 (1972). ${ }^{d}$ D. R. Stull and H. Prophet, "JANAF Thermochemical Tables", U.S. Department of Commerce, National Bureau of Standards, 1971. e J. A. Austin, D. H. Levy, C. A. Gottlieb, and H. E. Radford, J. Chem. Phys., 60, 207 (1974). f T. L. Porter, D. E. Mann, and N. Acquista, J. Mol. Spectrosc. 16, 228 (1965). g W. R. Harshbarger, J. Chem. Phys., 56, 177 (1972). ${ }^{h}$ All optimizations were performed without any restrictions. The given symmetry groups, therefore, correspond to the predicted symmetry. Since the CH bond lengths of geminal hydrogen atoms were found to be practically identical in all cases, only one of each is given in the table. ${ }^{i}$ Bond lengths are in angstroms, angles in degrees.

